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a b s t r a c t

Job shop scheduling problem is a typical NP-hard problem. To solve the job shop scheduling problem

more effectively, some genetic operators were designed in this paper. In order to increase the diversity

of the population, a mixed selection operator based on the fitness value and the concentration value

was given. To make full use of the characteristics of the problem itself, new crossover operator based on

the machine and mutation operator based on the critical path were specifically designed. To find the

critical path, a new algorithm to find the critical path from schedule was presented. Furthermore, a

local search operator was designed, which can improve the local search ability of GA greatly. Based on

all these, a hybrid genetic algorithm was proposed and its convergence was proved. The computer

simulations were made on a set of benchmark problems and the results demonstrated the effectiveness

of the proposed algorithm.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Scheduling is one of the most critical issues in the planning
and managing of manufacturing processes. The difficulty of
finding the optimal schedule depends on the shop environment,
the process constraints and the performance indicator. One of the
most difficult problems in this area is the job shop scheduling
problem (JSSP), which has been proved to be an NP-complete
problem [1]. Since the benchmarks of JSSP were presented by
Fisher and Thomson in 1963 [2], JSSP has been studied by a great
number of researchers, and many exact methods and approxima-
tion algorithms have been proposed [3–7]. Exact methods, such as
branch and bound, linear programming and Lagrangian relaxation
guarantee global convergence and have been successful in solving
small instances. However, they require a very high computing
time as the size of problem increases. So a lot of researchers paid
their attention to meta-heuristic and intelligent hybrid search
optimization strategies for solving JSSP. Among these, the shifting
bottleneck approach, particle swarm optimization, ant colony
optimization, simulated annealing, Tabu search, genetic algo-
rithm, neural network, immune algorithm are the typical exam-
ples. These intelligent optimization algorithms are relatively easy
to implement and could conveniently be adapted to different
kinds of scheduling problems, and especially, it has been proven
by experiments that they can find high-quality solutions within
reasonable computational time. These have made the research on
ll rights reserved.
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intelligent hybrid algorithm for JSSP increasingly popular in the
recent years.

Genetic algorithms were proposed by Holland [8] and have
been successfully used in a variety of practical problems. Davis [9]
first applied a genetic algorithm to the JSSP in 1985 successfully,
and now genetic algorithms have been proved to be an effective
approach for the JSSP. There are many such works, e.g., a genetic
algorithm with search area adaptation was proposed by Someya
and Yamamura [10]. Zhou and Feng [11] proposed a hybrid
heuristics GA for JSSP, where the scheduling rules, such as short-
est processing time (SPT) and most work remaining (MWKR),
were integrated into the process of genetic evolution. Park et al.
developed an efficient method based on genetic algorithm to
address JSSP. The scheduling method based on parallel genetic
algorithm was designed in [12]. Mattfeld and Bierwirth [13]
considered a multi-objective job shop scheduling problem
with release and due dates, as well as tardiness as objectives.
Watanabe et al. [14] proposed a modified genetic algorithm with
search area adaptation for solving the job shop scheduling
problem. Li presented a two-row chromosome structured new
genetic algorithm based on working procedure and machine
distribution [15]. The relevant crossover and mutation operations
were also designed in [15].

However, the existing genetic algorithms for the JSSP are
usually with a slow convergence speed and easy to trap into local
optimal solutions. In order to enhance the convergence speed,
many researchers focused their attention on combining the
genetic algorithm with local search schemes to develop some
hybrid optimization strategies for JSSP. Wang and Zheng [16]
developed a hybrid optimization strategy for JSSP by combining
the simulated annealing algorithm and the genetic algorithm.

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.12.005
mailto:renqingln@sina.com
mailto:ywang@xidian.edu.cn
dx.doi.org/10.1016/j.cor.2011.12.005
dx.doi.org/10.1016/j.cor.2011.12.005


R. Qing-dao-er-ji, Y. Wang / Computers & Operations Research 39 (2012) 2291–22992292
Gonc-alves et al. [17] presented a hybrid genetic algorithm for the
JSSP, in which the schedules were constructed by using a priority
rule and the priorities were defined by the genetic algorithm, and
then a local search heuristic was applied to improve the solution.
Zhang proposed a genetic simulated algorithm to solve the JSSP by
combining the GA and SA [18]. Liu et al. [19] combined the
traditional genetic algorithm with the Taguchi method and the
proposed algorithm possessed the merits of global exploration and
robustness. Xu proposed an immune genetic algorithm by com-
bining the immune theory and the genetic algorithm [20]. Vilcot
proposed a fast and elitist genetic algorithm based on NSGA-II for
solving the multi-objective SSSP [21]. Zhang combined the TS
algorithm and the genetic algorithm to develop a hybrid algorithm
for JSSP [22]. Zhang proposed a hybrid simulated annealing
algorithm based on a novel immune mechanism for the JSSP [23].

However, there are the following shortcomings for the afore-
mentioned algorithms: (1) these algorithms have not taken into
account the diversity of population. This can easily lead to the
‘‘premature’’ convergence because of the population being easily
filled with more similar individuals. (2) Most of the crossover
operators and mutation operators have not made use of the
characteristics of the JSSP structure itself. Many researchers
designed these operators according to the structure of code and
only changed the form of code. Thus, these operators usually
cannot guide the search to move to the better solutions, and are
also difficult to integrate the merit of the parent individuals.
(3) The local search ability is not satisfactory.

In order to overcome these drawbacks of the algorithms, in
this paper, a new crossover operator and mutation operator were
designed by sufficiently making use of the information and
structure of the JSSP, and these operators are efficient for JSSP.
Moreover, in order to enhance the diversity of the population and
avoid trapping into the local optimal solutions, a specifically
designed mixed selection scheme is presented. Furthermore, to
improve the speed of the algorithm, an efficient local search
approach is proposed and integrated into the proposed genetic
algorithm. The detailed contributions are as follows:
(1)
 Clear definitions of the similarity and the concentration were
given. And then a mixed selection operator based on the
fitness value and the concentration value was proposed. This
operator increased the diversity of the population and could
prevent the ‘‘premature’’ convergence to some extent.
(2)
 New kinds of crossover operator based on the machine and
mutation operator based on the critical path were specifically
designed according to the graph model of JSSP. To calculate
the critical path, we presented a new algorithm for finding it
from schedule.
(3)
 A local search operator was designed so as to improve the
local search ability of GA.
(4)
 Based on these genetic operators, we proposed a hybrid
genetic algorithm (HGA) and proved its convergence. Finally,
the efficiency of the proposed algorithm was verified by
computer simulations on some typical scheduling problems.
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The remainder of the paper is organized as follows. In Section 2,
the models of the JSSP are set up. In Section 3, a hybrid genetic
algorithm to the JSSP is presented and its convergence is proved.
Section 4 presents the experimental results. The conclusions are
made in Section 5.
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Fig. 1. The model of the problem.
2. Modeling the job shop scheduling problem

The JSSP with which we are concerned can be described as
follows [24]: There are n different jobs to be processed on m
different machines. Each job needs m operations and each opera-
tion needs to be processed without preemption for a fixed
processing time on a given machine. There are several constraints
on jobs and machines:
�
 A job can visit a machine once and only once.

�
 There are no precedence constraints among the operations of

different jobs.

�
 Preemption of operations is not allowed.

�
 Each machine can process only one job at a time.

�
 Each job can be processed by only one machine at a time.

�
 Neither release times nor due dates are specified.

The problem is to find a schedule to minimize the makespan,
that is, to minimize the time required to complete all jobs.

In order to clearly describe the proposed genetic operators, we
briefly introduce the disjunctive graph theory model for the JSSP [25].

Given an instance of job shop scheduling problem, we can
associate it with a disjunctive graph G¼(N,A,E), where N is a set
of all operations (seen as vertices), N¼ f0,1,Oij, i¼ 1,2,. . .,n;
j¼ 1,2,. . .,m9g, Oij represents the jth operation of the ith job.
0 and 1 are two virtual processes, respectively, and represent
the beginning and end of the schedule. A is a set of edges which
connect the adjacent operations of the same job. A¼ fð0,Oi1Þ9i¼
1,2,. . .,ng [ fðOi,j,Oi,jþ1Þ9i¼ 1,2,. . .,n,j¼ 1,2,. . .,m�1g [ fðOim,1Þ9i¼
1,2,. . .,ng. It reflects the process constraint between the different
operations of the same job (indicated with directed solid line in
Fig. 1). E is a set of non-directed edges which connect the
operations processed on the same machine. Non-directed edge
is the edge there are two possible directions (indicated with
dashed line in Fig. 1). E¼E1[E2[?[Em, where the subset
Ej(j¼1,2,y,m) expresses the non-repetition edges which connect
the operations processed on the same machine j. If the number of
the operations processed on machine j is dj, the number of edges
on subset Ej is C2

dj
.

If we can fix the directions of non-directed edges on each
subset and form a path over all nodes on each subset, then we can
determine the sequence of the operations processed on each
machine. These non-directed edges are replaced with directed
edges (indicated with directed dashed line in Fig. 2) after the
directions are fixed. Thus, we have found a schedule to the
corresponding JSSP. Therefore, selecting a schedule is equivalent
to choosing a graph G(N,A,E

0

), where E0 ¼ E01 [ E02 [ � � � [ E0m, E0j is a
directed connected path which traverse all vertices associated
with Ej. The number of the edges on the subset E0j is dj�1. If the
selected graph is acyclic, it corresponds to a feasible schedule.

Each vertex OijAN is corresponding to a weight tij, where tij is
the processing time of the jth operation of the ith job. Vertices
0 and 1 have weight zero. We define the longest path from vertex
0 to vertex 1 as the critical path. Then the length of critical path
corresponds to the maximum completion time of the scheduling.
Finding the minimum critical path from all the directed graph
G(N,A,E

0

) is equivalent to finding the optimal solution of the JSSP
(i.e. the solution corresponding to the minimum makespan).
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Fig. 2. A solution of the problem.

Table 1
A 3-job and 3-machine JSSP.

Jobs Operations

1 2 3

Processing time J1 3 3 2

J2 1 5 3

J3 3 2 3

Machine order J1 M1 M2 M3

J2 M1 M3 M2

J3 M2 M1 M3

O21 O11 O32M1
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Consider a 3-job and 3-machine problem given in Table 1 as an
example. A graph G¼(N,A,E) can be corresponding to this pro-
blem. From the above discussion, we get

N¼ f0,1,O11,O12,O13,O21,O22,O23,O31,O32,O33g

A¼
ð0,O11Þ,ð0,O21Þ,ð0,O31Þ,ðO11,O12Þ,ðO12,O13Þ,ðO21,O22Þ,ðO22,O23Þ,

ðO31,O32Þ,ðO32,O33Þ,ðO13,1Þ,ðO23,1Þ,ðO33,1Þ

( )

E¼ E1 [ E2 [ E3

where E1¼{(O11,O21),(O11,O32),(O21,O32)}, E2¼{(O12,O31),(O12,O23),
(O23,O31)}, E3¼{(O13,O22),(O13,O33),(O22,O33)}, Oij represents the jth
operation of the ith job. We use directed solid line to indicate the
edges in A and dashed line to indicate the edges in E. Thus, we get
the model of the problem as shown in Fig. 1. If we fix the directions
of non-directed edges in Ei (i¼1,2,3) and form a path over all nodes
on each Ei, denoted by E0i, such as E01 ¼ fðO21,O11Þ,ðO11,O32Þg,
E01 ¼ fðO31,O12Þ,ðO12,O23Þg, E03 ¼ ðO22,O13Þ,ðO13,O33Þ

� �
, then we find

a schedule to this problem as shown in Fig. 2 (edges in Ei (i¼1,2,3)
are indicated with directed dashed line).
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Fig. 3. Decoding of the chromosome [(2 1 3)(3 1 2)(2 1 3)].
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Fig. 4. An infeasible scheduling.
3. A new hybrid genetic algorithm for JSSP

3.1. Encoding and decoding

Defining an appropriate representation of individual is the
most important and critical issue for constructing an efficient GA.
As mentioned above, determining a schedule is equivalent to
determine a graph G(N,A,E0), where E0 ¼ E01 [ E02 [ � � � [ E0m, and E0j is
a directed connected path which traverses all vertices associated
with Ej, that is, if we can make sure the sequence of the operations
processed on each machine, we can determine a schedule. Thus,
the following encoding scheme proposed by Falkenauer and
Bouffoix [26] is adopted in this paper: a chromosome is composed
of m substrings, corresponding to m different machines. Each
substring represents the sequence of the operations processed on
each machine, denoted by a permutation of integers from 1 to n.
The total length of a chromosome is n�m. Consider a 3-job and
3-machine problem given in Table 1 as an example. Suppose a
schedule is given as shown in Fig. 2, then the corresponding
chromosome is: [(2 1 3) (3 1 2) (2 1 3)]. Here, substrings (2 1 3),
(3 1 2), (2 1 3) represent, respectively, the sequences of the
operations processed on machine 1, 2 and 3. Conversely, from
the chromosome [(2 1 3) (3 1 2) (2 1 3)], we also can get the
corresponding schedule as shown in Fig. 2.

If the selected graph G(N,A,E’) is acyclic, it corresponds to a
feasible schedule. We can use the following method to decode
all the feasible schedules. We introduce the decoding method
through decoding the chromosome [(2 1 3) (3 1 2) (2 1 3)].
According to Table 1, operations O11,O21,O32 must be scheduled
on machine 1, operations O12,O23,O31 must be scheduled on
machine 2 and operations O13,O22,O33 must be scheduled on
machine 3, where Oij represents the jth operation of the ith job.
And the schedule must meet the process constraint O11-O12-

O13, O21-O22-O23 and O31-O32-O33, where Oij-Opq means
operation Oij must be scheduled before Opq. The substrings (2 1 3),
(3 1 2), (2 1 3) represent the sequences of the operations
processed on machine 1, 2 and 3, respectively. Therefore, the
sequences of the operations processed on machine 1 is O21-

O11-O32, machine 2 is O31-O12-O23 and machine 3 is O22-

O13-O33. So the first operations which can operate on the
machine 1, 2, 3 are operations O21,O31,O22, respectively. After
considering the process constraint, we schedule operation O21 on
machine 1, operation O31 on machine 2 and operation O22 on
machine 3 one after another at the earliest allowable time. Then
the operations which can operate on machine 1, 2, 3 are, respec-
tively, operations O11,O12,O13. After considering the process con-
straint, we schedule operations O11,O12,O13 on machine 1, 2, 3 one
after another at the earliest allowable time. And then the opera-
tions can operate on machine 1, 2, 3 are, respectively, operations
O32,O23,O33. After considering the process constraint, we schedule
operation O32 on machine 1, operation O23 on machine 2 and
operation O33 on machine 3 one after another at the earliest
allowable time. Then we get the corresponding schedule shown in
Fig. 3.

Obviously, if the selected graph G(N,A,E0) includes one or more
cycles, it corresponds to an infeasible schedule. Then we use the
following method to change an infeasible schedule into a feasible
schedule. Suppose a schedule is given as shown in Fig. 4, then the
corresponding chromosome is: [(2 3 1) (1 3 2) (2 1 3)]. So the
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sequences of the operations processed on machine 1 is O21-

O32-O11, machine 2 is O12-O31-O23 and machine 3 is O22-

O13-O33 and the process constraint is same to above example. So
the first operations which can operate on machine 1, 2, 3 are,
respectively, operations O21,O12,O22. After considering the process
constraint, we schedule operation O21 on machine 1, operation
O22 on machine 3 at the earliest allowable time, respectively.
Then the operations which can operate on machine 1, 2, 3 are,
respectively, operations O32,O12,O13. After considering the process
constraint, we find none of the operations meets the process
constraint because operations O31, O11 and O12 have not been
scheduled yet. That means the schedule corresponding to this
chromosome is an infeasible schedule. Then we consider the next
operations which can operate on each machine. They are opera-
tions O11,O31,O33, respectively, processed on machine 1, 2, 3. After
considering the process constraint, we schedule operation O11 on
machine 1, operation O31 on machine 2 at the earliest allowable
time, respectively. Then we schedule operation O32 on machine 1,
operation O11 on machine 2 at the earliest allowable time. After
that we schedule operation O23 on machine 2, operation O13 on
machine 3 at the earliest allowable time. At last we schedule
operation O33 on machine 3. Then we get the corresponding
schedule as shown in Fig. 3. Finally, we find the chromosome
corresponding to the Fig. 3 is [(2 1 3) (3 1 2) (2 1 3)].That is, we
change the infeasible schedule [(2 3 1) (1 3 2) (2 1 3)] into a
feasible schedule [(2 1 3) (3 1 2) (2 1 3)] through above method.
3.2. Fitness function and selection operation

Fitness function is defined so as to determine the quality of
individuals, and it is usually relevant to the objective function to
be optimized. The greater the fitness of a chromosome is, the
greater its survival probability. In this study, the fitness function
is defined as f(x)¼1/makespan, where x is any individual in the
population.

The selection phase is responsible to choose individuals for
reproduction. Most of the selection strategies of GA adopt the
method that the probability of selecting an individual is propor-
tional to its fitness value. This can easily lead to the ‘‘premature’’
convergence because of the population being filled with more
similar individuals [27]. To avoid this problem, a mixed selection
operator based on the fitness value and the concentration value
was proposed in this paper. This operator increases the diversity
of the population and can prevent the ‘‘premature’’ convergence
to some extent. Given any two individuals x¼ ½ðx1,x2,. . .,xnÞ, ðxnþ1,
xnþ2,. . .,x2nÞ,. . .ðxnðm�1Þþ1,xnðm�1Þþ2,. . .,xn�mÞ� and y¼ ½ðy1,y2,. . .,
ynÞ,ðynþ1,ynþ2,. . .,y2nÞ, . . .ðynðm�1Þþ1,ynðm�1Þþ2,. . .,yn�mÞ�, we first
give the definitions of the similarly degree, the similarity and
the concentration.
Definition 1. For job i in the pth substrings (i.e., the pth
parenthesis) of x and y (iA(1,2,y,n), pA(1,2,y,m)), there may
be some jobs which are in a position after i or before i in both
corresponding strings of x and y. We called the number of these
jobs as the similarity degree of job i in the pth substrings on x and
y, and denoted as SDE(i,p).
Definition 2. We called the sum of the similarity degrees of all
jobs in substring p (pA(1,2,y,m)) as the similarity degree of
substring p on x and y, and denoted as SDS(p). SDSðpÞ ¼Pn

i ¼ 1 SDEði,pÞ. The larger the similarity degree, the more similar
the corresponding substrings in two individuals.
Definition 3. Suppose SDE(i,p) is the similarity degree of job i in
the pth substrings on individuals x and y. Then the similarity of x

and y is defined as

sðx,yÞ ¼

Pm
p ¼ 1

Pn
i ¼ 1 SDEði,pÞ

n� ðn�1Þm

We use the 4-job and 3-machine problem as an example to
explain the similarity degree. Assume that x¼[(1 2 4 3) (3 1 4 2)
(4 3 1 2)] and y¼[(2 1 4 3) (3 1 4 2) (4 1 3 2)] are two given
individuals. By comparison of the corresponding substrings of
these two individuals, we observe that: for substring 1 of both
individuals, there are two jobs 3 and 4 in a position after 1. There
are also two jobs 3 and 4 in a position after 2. There are three jobs
1, 2 and 4 in a position before 3, and there are two jobs 1 and 2 in
a position before 4 and there is one job 3 in a position after 4.
Therefore, SDE(1,1)¼2, SDE(2,1)¼2, SDE(3,1)¼3, SDE(4,1)¼3 and
SDS(1)¼2þ2þ3þ3¼10. As similar, we get SDS(2)¼3þ
3þ3þ3¼12 and SDS(3)¼2þ3þ2þ3¼10, respectively. Finally,
the similarity of these two individuals is s(x,y)¼(10þ12þ10)/
36¼0.889.

Definition 4. Suppose L is the population size and l is a threshold
value. In the current population, we use Q(x,l) to denote the total
number of the individuals whose similarity with x is greater than
or equal to the threshold l. Then the concentration value of
individual x is defined as c(x)¼Q(x,l)/L.

Obviously, the greater the value s(x,y)A[0,1] is, the more
similar the individuals x and y. If s(x,y)¼1, the individuals x and
y are the same individual. The greater the value c(x)A[0,1] is, the
more individuals are similar with individual x.

Suppose x1,x2,y,xL are the individuals in the population, L is
the population size, f(xl) (l¼1,2,y,L) is the fitness function and
c(xl) is the concentration value of individual xl. The following
selection operator based on the fitness value and the concentra-
tion value was given in this paper.

Algorithm 1. (A mixed selection operator based on the fitness
value and the concentration value):

Step 1: For each individual xl in the population, compute the

pre-selection probability by using two different ways: one is by

pf ðxlÞ ¼ f ðxlÞ=
PL

k ¼ 1 f ðxkÞ, and another is by pcðxlÞ ¼ ð1�cðxlÞÞ=

ðL�
PL

k ¼ 1 cðxkÞÞ. The former is based on fitness value and the

later is based on the concentration. If L¼
PL

k ¼ 1 cðxkÞ, we define

pc(xl)¼0.

Step 2: For each individual xl in the population, define the

selection probability ps(xl)¼mpf(xl)þ(1�m)pc(xl) called mixed

selection probability by mixing pre-selection probabilities pf(xl)

and pc(xl), where m2(0,1) is a coefficient.

Step 3: Use the roulette wheel selection strategy with the

probability ps(xl) to select individuals from the population and

generate new population

3.3. A new crossover operator

The goal of the crossover is to obtain better offspring by
making use of the parental information. In this paper, a new
crossover operator based on the characteristic of the JSSP itself
was designed. Suppose x and y are two parent individuals, the
crossover operator designed in this paper can be described as
follows.

Algorithm 2. (A new crossover operator based on the machine):

Step 1: Divide the machines 1,2,?,m into two complementary

sets A and B.
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Step 2: For two parent individuals x and y, swap the genes in

the substrings that belong to set B with probability of pc and get

two children x0 and y0.

Swapping the genes in the substrings that belong to set B is
equivalent to swapping the sequences of the operations processed
on machines which belong to set B. In this way, the children can
effectively inherits the sequences of the operations processed on
machines that belong to set A.

We used a 3-job and 3-machine problem as an example to
explain the steps of the crossover operator.

Suppose the two parent individuals parent 1 and parent 2 are
[(213) (312) (213)] and [(321) (321) (321)]. We get the graph
model of the two parents shown in Figs. 5 and 6 at first.

Second, we divide the machines into two complementary sets,
e.g., {1, 3} and {2}. Third, we swap the substring 2 and get two
children [(213) (321) (213)] and [(321) (312) (321)]. Figs. 7 and 8
show the child 1 and 2 respectively.

The crossover operator designed in this paper is similar to the
crossover operator in [26]. However, the crossover operator in
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Fig. 5. Parent 1.
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Fig. 7. Child 1.
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Fig. 8. Child 2.
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Fig. 6. Parent 2.
[26] is like to a single point crossover, it can only separate the
machines 1,2,y,m from the middle to two set, such as
{1,2,y,m1},{m1þ1, m1þ2,y,m}and then executes the crossover.
The crossover operator designed in this paper is like to a multi-
point crossover, it can randomly divide the machines 1,2,y,m
into two complementary sets. Obviously, the crossover operator
designed in this paper is more flexible, and it increases the
diversity of the population.

From the proposed crossover operator, we can observe that the
children can inherit the sequences of the operations processed on
some machines of their parents and the crossover operator is easy
to execute.

3.4. A new mutation operator

The mutation operator further carries out some adjustments
for a parent individual and gets an offspring. It can increase the
diversity of the population and is helpful to jump out local
optimal solutions.

According to Dell’Amica and Tubian [28], there are the follow-
ing properties for JSSP:
(1)
 If x is a feasible solution, then reversing one of the oriented
edges on a critical path of x can never lead to an infeasible
solution;
(2)
 If the reversal of an oriented edge of a feasible solution x that
does not belong to a critical path leads to a feasible solution x0,
then the critical path in x

0

cannot be shorter than the critical
path in x.
According to these properties, a mutation operator based on
the critical path was designed. Let PM(Oij) and SM(Oij) denote the
immediate predecessor and the immediate successor of operation
Oij, respectively, on the same machine if they exist, otherwise,
PM(Oij)¼0, SM(Oij)¼1, where Oij represents the jth operation of
the ith job. Then the proposed mutation operator can be described
as follows.

Algorithm 3. (A new mutation operator based on the
critical path):

Step 1. Calculate the critical path of a parent. Suppose that the

obtained critical path is cp¼ fOi1j1
,Oi2j2

,. . .,Oiqjq
g. Let k¼1, the

child¼the parent.

Step 2. If operations Oikjk
and Oikþ 1jkþ 1

are processed on the same

machine, then consider all possible permutations of

fPMðOikjk
Þ,Oikjk

,Oikþ 1jkþ 1
g and fOikjk

,Oikþ 1jkþ 1
,SMðOikþ 1jkþ 1

Þg in which

arc ðOikjk ,Oikþ 1jkþ 1
Þ is inverted, randomly select one of them, and

use this operations sequence to replace the previous sequence in

the child with probability of pm.

Step 3. If koq then let k¼kþ1 and go to step2, else, output

the child.

In order to calculate the critical path, we presented a new
algorithm for finding the critical path. Suppose S(Oij) and C(Oij) are
the starting time and the completing time of operation Oij, where
Oij represents the jth operation of the ith job. i¼1,2,y,n,
j¼1,2,y,m. The algorithm is as follows.

Algorithm 4. (A new algorithm for finding the critical path):

Step 1: Decode the given chromosome to get a feasible

schedule.

Step 2: Let K ¼ fOij9i¼ 1,2,. . .,n; j¼ 1,2, . . .,mg, set Q¼f (f
represents an empty set).

Step 3: While ((aAK, there is no bAK fulfilling C(a)¼S(b)), then

delete a from K and update K.
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Step 4: Select an operation a1AK fulfilling S(a1)¼0 and insert it

into Q, Let k¼1.

Step 5: While(C(ak)amakespan), then k¼kþ1, select an opera-

tion akAK fulfilling S(ak)¼C(ak�1) and insert it into Q.

Step 6: List the elements a1, a2,y,ak in the set Q. Obviously,

a1-a2-?-ak is the critical path.

We used the 3-job and 3-machine problem as an example to
explain the steps of the mutation operator. Suppose the parent
individual is [(2 1 3) (3 1 2) (2 1 3)].

At first, we calculate the critical path of the parent by
Algorithm 4, and decode chromosome [(2 1 3) (3 1 2) (2 1 3)]
and get the corresponding schedule shown in Fig. 2.

Let K¼{O11,O12,O13,O21,y,O33}, Q¼f. For the operations
a¼O32,O31,O23,O22, there has no bAK fulfilling C(a)¼S(b), so
delete them from K and get K¼{O11,O12,O13,O21,O33}.

Since S(O21)¼0, so put O21 into set Q at first. As
C(O21)¼S(O11),C(O11)¼S(O12),C(O12)¼S(O13), C(O13)¼S(O33), and
S(O33)¼makespan, therefore, insert them into set Q one after
another and get set K¼{O21,O11,O12,O13,O33}. As a result, we get a
critical path O21-O11-O12-O13-O33.

On the critical path, operations O21 and O11 are assigned to
machine 1, operations O13 and O33 are assigned to machine 3. For
operations O21 and O11 , we consider schedules
{(O11,O21,O32),(O11,O32,O21),(O32,O11,O21)}. Select one of them,
such as (O11,O21,O32), to replace the previous sequence
(O21,O11,O32) with probability of pm. For operations O13 and O33,
we consider schedules {(O22,O33,O13),(O33,O22,O13),(O33,O13,O22)}.
Select one of them, such as (O22,O33,O13), to replace the previous
sequence (O22,O13,O33) with probability of pm, and get the child as
shown in Fig. 9.

According to Dell’Amico and Trubian [28], for each feasible
solution x, it is possible to construct a finite sequence of mutation
operator, which will lead from x to a globally optimal solution.
Therefore, this mutation operator is helpful to produce excellent
individuals.
3.5. A new local search operator

To enhance the speed of the proposed algorithm, a new local
search operator is proposed in this paper. Assume that x is a given
individual and x

0

is the resulting individual through local search
operator from x, and s is the number of the new solutions to be
generated in our local search operator.

Algorithm 5. (A new local search operator):

Step 1: Let k¼1, Ne¼f (f represents an empty set).

Step 2: If krs, go to step 3, else, go to step 6.

Step 3: Randomly select a machine number mkA{1,2,y,m}.

Step 4: Change the sequence of the operations processed on

machine mk and gets a new solution Nk.

Step 5: Put solution Nk into set Ne, k¼kþ1, and then turn to

step 2.

Step 6: Choose the best individual from Ne as x
0

.

O11 O12 O13

O23O22O21

O33O32O31

10

Fig. 9. The child.
3.6. The framework of the HGA

Based on aforementioned genetic operators, we proposed a
new hybrid genetic algorithm (briefly HGA) to solve the JSSP. The
framework of the algorithm can be described as follows:

Algorithm 6. (Hybrid genetic algorithm: HGA):

Step 1. Initialization: Generate initial population P(0), and let

t¼0. Evaluate the fitness value of each individual in P(0).

Step 2. Crossover: Group all the individuals in P(t) into pair

wise randomly, and use Algorithm 2 to each pair of individuals

and obtain a set of offspring, denoted by P
0

(t).

Step 3. Mutation: Use Algorithm 3 to all the individuals in P
0

(t)

and obtain a set of offspring, denoted by P
00

(t).

Step 4. Evaluate fitness value: Evaluate the fitness value of each

individual in P
00

(t).

Step 5. Local Search: Use Algorithm 5 to each individual in P
00

(t)

with probability of pl and obtain a set of offspring, denoted by P
000

(t).

Step 6. Selection: Select N individuals from P
000

(t) by Algorithm 1

to get a tentative population, still denoted as P
000

(t), then use the

elitist strategy to the union of P
000

(t) and P(t) to get the next

generation population P(tþ1).

Step 7. If the stop criterion is satisfied, then stop. Otherwise, let

t¼tþ1, and turn to step 2.

3.7. Convergence analysis of the HGA

At first, we introduce several symbols.
�
 O: The feasible solution space.

�
 x: Any feasible solution, xAO.

�
 f(x): The objective function, f(x)¼makespan.

�
 fn: The globally minimum of the objective function, i.e.,

fn¼min{f(x)9xAO}.

�
 Xn: The set of optimal solutions, i.e., Xn

¼{xAO9f(x)¼ fn}.

�
 T: The first time (generation) to find the optimal solution, i.e.,

T ¼minft9f nt ¼ f ng, where f nt is the minimum of the tth genera-
tion of population.

For proposed algorithm, we can get the following conclusions.

Theorem 1. For algorithm HGA with any initial population P(0),
suppose the crossover, mutation, local search and selection operators

are independent of each other and the crossover probability is pc, the

mutation probability is pm and the local search probability is pl. HGA

can find the global optimum in limited iterations with probability 1,

i.e., p{ToþN}¼1.

Proof. According to Dell’Amico and Trubian [28], for 8xAO, it is
possible to construct a finite sequence of mutation operations,
which will lead from x to a globally minimal solution xnAXn. This
process can be represented as: x¼ x0-x1- � � �-xt ¼ xn. Suppose
the critical path of xk is cp¼ fOi1j1

,Oi2j2
,. . .,Oiqjq

g. Form Algorithm 3,
if operations Oikjk and Oikþ 1jkþ 1

are processed on the same machine,
then consider all possible permutations of fPMðOikjk

Þ,Oikjk
,Oikþ 1jkþ 1

g

and fOikjk
,Oikþ 1 jkþ 1

,SMðOikþ 1 jkþ 1
Þg (a total of six cases) in which arc

ðOikjk ,Oikþ 1jkþ 1
Þ is inverted, randomly select one of them, and use

this operations sequence to replace the previous sequence with
probability of pm.

Therefore, the probability of getting xkþ1 from xk (k¼ 0,1,2,. . .,

t�1) after mutation should fulfill p{xkþ1¼mutation{xk}}Z

(pm(1�pm)q�1/6)¼dm40, where q is the number of operations

on the critical path. Note kx as the length of the shortest path from

x to a point in Xn through a finite successive mutation. Let

kn
¼maxfkx9x=2Xn

g.
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For 8xAP(t), the probability of x not being destroyed after

crossover operator is p(xAP0(t))Z1�pc¼dc40.

Thus, after mutation, the probability of getting x1 from x is

p{x1AP00(t)}Zdm40. The probability of x1 not being destroyed

after local search operator is pðx1AP000ðtÞÞZ1�pl ¼ dl40. The

probability of x1 being selected to the next generation population

P(tþ1) is P{x1AP(tþ1)}Zps(x1)40. Let ds ¼minfpsðx1Þ,psðx2Þ,. . .,

psðxtÞg, then, after the crossover, mutation, local search and

selection once, the probability of getting x1 from x is p{x1AP(tþ

1)}Zdc dm dl ds40.

Let p(kx) denote the probability of getting xnAXn from x after kx

generations, then pðkxÞZ ðdcUdmUdlUdsÞ
kx 40. Let p(kn) denote the

probability of getting an optimal solution from x after kn genera-

tion, then pðkn
ÞZ ðdcUdmUdlUdsÞ

kn

¼ d40. The probability not find-

ing the optimal solution after kn generation is pnotðk
n
Þr1�d40.

So pnotð1Þr ð1�dÞ
1=kn

40 and pnotðkÞrð1�dÞ
k=kn

40.

Therefore, limk-1pnotðkÞr limk-1ð1�dÞk=kn

¼ 0. Since p{To
þN}Z {find the optimal solution at k generations}¼1�pnot(k),

let k-N, we can get P{ ToþN}Z1. Thus, p{ ToþN}¼1. &
Table 2
Experimental results.

Problem Size Best Known
Solution (BKS)

HGA Yang
(2008)
MA[30]

Goncalves (2005)
Param. active[31]

1 2

FT06 6�6 55 55 55 55 55

FT10 10�10 930 930 938 930 930

FT20 20�5 1165 1165 1165 1165 1165

LA01 10�5 666 666 666 666 666

LA02 10�5 655 655 655 655 655

LA03 10�5 597 597 597 597 597

LA04 10�5 590 590 590 590 590

LA05 10�5 593 593 593 593 593

LA06 15�5 926 926 926 926 926

LA07 15�5 890 890 890 890 890

LA08 15�5 863 863 863 863 863

LA09 15�5 951 951 951 951 951

LA10 15�5 958 958 958 958 958

LA11 20�5 1222 1222 1222 1222 1222

LA12 20�5 1039 1039 1039 1039 1039

LA13 20�5 1150 1150 1150 1150 1150

LA14 20�5 1292 1292 1292 1292 1292

LA15 20�5 1207 1207 1207 1207 1207

LA16 10�10 945 945 945 945 945

LA17 10�10 784 784 784 784 784

LA18 10�10 848 848 848 848 848

LA19 10�10 842 844 844 844 842

LA20 10�10 902 907 911 907 907

LA21 15�10 1046 1046 1046 – 1046

LA22 15�10 927 935 935 – 935

LA23 15�10 1032 1032 1032 – 1032

LA24 15�10 935 953 953 – 953

LA25 15�10 977 981 984 – 986

LA26 20�10 1218 1218 1218 – 1218

LA27 20�10 1235 1236 1256 – 1256

LA28 20�10 1216 1216 1225 – 1232

LA29 20�10 1152 1160 1196 – 1196

LA30 20�10 1355 1355 1355 – 1355

LA31 30�10 1784 1784 1784 – 1784

LA32 30�10 1850 1850 1850 – 1850

LA33 30�10 1719 1719 1719 – 1719

LA34 30�10 1721 1721 1721 – 1721

LA35 30�10 1888 1888 1888 – 1888

LA36 15�15 1268 1287 1287 – 1279

LA37 15�15 1397 1407 1408 – 1408

LA38 15�15 1196 1196 1219 1219

LA39 15�15 1233 1233 1245 1246

LA40 15�15 1222 1229 1241 1241
Theorem 2. Algorithm HGA converges to the optimal solution with

probability 1.

Proof. According to Theorem 1, HGA can find the global optimum
in limited iterations with probability 1. Because of adopting the
elitist strategy in HGA, the algorithm converges to the optimal
solution with probability 1. &

From the proof process, it can be easily found that because of
using the new mutation operator based on the critical path
designed in this paper, algorithm HGA can find the global
optimum in limited iterations with probability 1. Therefore, if
we do not use the mutation operator designed in this paper, the
convergence of the algorithm cannot be guaranteed.
4. Simulation results

In order to verify the good performance of the proposed hybrid
genetic algorithm, we use 43 instances from two classes of
standard JSSP test problems: Fischer and Thompson [2] instances
FT06, FT10, FT20 and Lawrence [29] instances LA01–LA40.
Ombuki
(2004)
LSGA[32]

Coello
(2003)
AIS[33]

Wang
(2001)
MGA[16]

Binato (2001)
GRASP[34]

Sabuncuoglu
(1999) Beam
search[35]

– – 55 55 –

– 941 930 938 1016

– – 1165 1169 –

– 666 666 666 666

– 655 – 655 704

– 597 – 604 650

– 590 – 590 620

– 593 – 593 593

– 926 926 926 926

– 890 – 890 890

– 863 – 863 863

– 951 – 951 951

– 958 – 958 958

– – 1222 1222 1222

– – – 1039 1039

– – – 1150 1150

– – – 1292 1292

– – – 1207 1207

959 945 945 946 988

792 785 – 784 827

857 848 – 848 881

860 848 – 842 882

907 907 – 907 948

1114 – 1058 1091 1154

989 – – 960 985

1035 – – 1032 1051

1032 – – 978 992

1047 1022 – 1028 1073

1307 – 1218 1271 1269

1350 – – 1320 1316

1312 1277 – 1293 1373

1311 1248 – 1293 1252

1451 – – 1368 1435

1784 – 1784 1784 1784

1850 – – 1850 1850

1745 – – 1719 1719

1784 – – 1753 1780

1958 1903 – 1888 1888

1358 1323 1291 1334 1401

1517 – – 1457 1503

1362 1274 – 1267 1297

1391 1270 – 1290 1369

1323 1258 – 1259 1347



Table 3
Average relative deviation to the BKS.

Algorithm NIS ARD Improvement

OA (%) HGA (%) HGA (%)

Yang (2008) MA 13 0.06 0.04 0.02

Goncalves (2005) Param. active 43 0.39 0.17 0.22

Ombuki (2004) LSGA 25 5.22 0.29 4.94

Coello (2003) AIS 24 1.51 0.15 1.36

Wang (2001) MGA 11 0.27 0.13 0.14

Binato (2001) GRASP 43 1.68 0.17 1.51

Sabuncuoglu (1999) Beam search 41 4.02 0.18 3.84

Dauzere (1997) Tabu search 43 0.86 0.17 0.69
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The HGA was compared with some algorithms reported in
literature [16,30–35] in recent years.

The parameters used in simulations are as follows: the
population size N¼100, the crossover probability pc¼0.7, the
mutation probability pm¼0.1, and the local search probability
pl¼0.5. In the selection operator, l¼0.8 and m¼0.7. In the local
search operator, s¼10. The algorithm was run 10 independent
times on each test problem.

The HGA was implemented in Visual Cþþon a computer with a
2.66 GHz Intel Core 2 Duo CPU. Table 2 shows the experimental
results. It lists problem name, problem size (number of jobs�
number of operations), the best known solution (BKS), and the
solution obtained by each of the compared algorithms. Among
them, column HGA1 lists the results obtained by using the local
search operator in the HGA and column HGA2 lists the results
obtained by not using the local search operator.

Table 2 shows that the proposed algorithm is able to find the
best known solution for 33 instances, i.e., in about 77% of the
instances. For small problems FT06, FT10, FT20 and LA01–LA15,
almost all the algorithms can find the optimal solution. For relatively
large problems LA16–LA40, the results of the proposed algorithm
(HGA) are better than or equal to those of other algorithms. For HGA,
the results obtained by using the local search operator are better
than the results obtained by not using the local search operator. This
shows that the proposed local search operator takes an important
role in improving the quality of the solutions.

For each algorithm, we can use formula RD¼100� (MFM�BKS)/
BKS for each instance to calculate the relative deviation, where MFM
means the minimum makespan found and BKS means the best
known solution. We use ARD to denote the average value of relative
deviations for all the instances. Table 3 shows the number of
instances solved (NIS), and the average relative deviation (ARD).
The ARD was calculated for the Hybrid Genetic Algorithm (HGA),
and for the other algorithms (OA) listed in the table. The last column
(Improvement) presents the reduction of ARD obtained by the HGA
with respect to each of the other algorithms.

From Table 3, we know the deviation of the minimum makespan
found from the best known solution of HGA is only on average
0.17%. The proposed algorithm yields a significant improvement in
solution quality with respect to all other algorithms.
5. Conclusions

To solve the JSSP more effectively, a mixed selection operator
based on the fitness value and the concentration was designed in
order to increase the diversity of the population. Crossover
operator based on the machine, and mutation operator based on
the critical path were designed according to the graph model of
JSSP. To calculate the critical path, a new algorithm was pre-
sented. A local search operator was designed in order to improve
the quality of the solutions. Based on these, a hybrid genetic
algorithm was proposed, and the convergence of HGA to the
global optimal solution in finite generation with probability 1 is
proved. Then the convergence of HGA to the optimal solution
with probability 1 is proved. The experimental results show that
the proposed algorithm is effective and performs better than the
compared algorithms.
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